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The KP and more dimensional Kdv equations on A?) and Ai’) 

P F Dhooghe 
Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan ZOOB, 3030 Hever- 
lee, Belgium 

Received 11  May 1987 

Abstract. The K P  equations, which are conjugated to completely integrable fows, on Ail’ 
and A:” are examined. These equations fall into different classes determined by the order 
of the Hamiltonians involved. More dimensional KdV equations appear in this analysis. 

1. Introduction 

In this paper we describe the K P  (Kadomtsev-Petviashvili) equations on the affine Lie 
algebras A;’’ and Ai’)  (without central extensions [l]) .  The equations we study are 
conjugated to the commutation relations of Hamiltonian flows on certain subalgebras. 
These subalgebras are equipped with a Poisson structure, for which the flows are 
completely integrable (even algebraic integrable [2]). The Poisson structure is given 
by the coadjoint action, derived by means of the Kostant-Adler-Symes theorem [3]. 

The main argument in favour of this approach is the van Moerbeke-Mumford 
theorem, which gives the finite zone solutions of the equations as quotients of theta 
functions on the Jacobian of a Riemann surface [4]. 

We will focus here on the appearance of the equations in relation with the order 
of the Hamiltonians from which the equations are derived. It seems indeed that what 
is normally called the set of K P  equations [5,6] is not a homogeneous set of equations, 
but falls into well distinguished different classes, determined by the order of the 
Hamiltonians involved. We stress the fact that our description is different from the 
one in [5,6]. 

It is well known that the Kdv and MKdv are describable on A‘,” [7-lo]. Both 
equations are conjugated to each other. The conjugation defines the Miura transforma- 
tion [7]. We give a review while fixing the setting for the calculations on A;’) and A:”. 

The MKdv equation is the principal system, while Kdv is obtained by conjugation. 
The general approach goes as follows [ 111. 

Let 2[,,i be defined as 

.Inl={ --x 5 , A 1 1 & t r l ( n , R ) , m . Z , A E C  1 . 
The elements of L?(n, are treated as formal series in A. Hence 2(n, is a Z-graded Lie 
subalgebra of A??’.  We consider the decomposition 

where 2- is the part consisting of negative powers and Lf+ of the positive powers of 
A.  To is sl( n 1. We also consider the subspaces, m E Z, 

2,ni=2-@20@2+ 
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Further, let s l ( n )  = n-@ b be the algebra decomposition of sl( n )  ( S I (  n )  = S I (  n, R)), with 
respect to a given Cartan subalgebra h of sl( n ) ;  n -  is the nilpotent subalgebra on the 
negative root spaces and  b the Bore1 subalgebra on the positive root spaces. 

The following Lie algebra decomposition of 9, ) will be used throughout this paper: 

9 , n , = 9 ? @ * Q  with 9? = 2 - @ n - ,  A = b@2'+.  

We will further use the standard matrix representation (for which h is diagonal) of 
sl( n ) .  As a basis for the invariant polynomials on sl( n )  we will use the homogeneous 
forms 

Q,(O = ( 1 / d  Tr([51') i = 2 , .  . . , n ;  ( ~ s l ( n ) .  

The quadratic form Q2 determines the Killing form K. 
On 2'( i, each of these forms induces an  ad  2, ", invariant form by 

Qc,k = Res ( A k - '  * Q,) .  
A =O 

Let 2l denote the algebra (over R) generated by the set { Q , , k } .  
We define the induced bilinear form k on 2,,, in a similar way by 

k =Res  K ' K .  
A =O 

The form k identifies 2' with $t* (the dual of $t) and SIL with %*. 
The subspaces , Q L m  =.Q'n (YO@2T) are Poisson spaces for the coadjoint action 

of the simply connected Lie group @(9) with Lie algebra 9 13, lo]. The functions in 
?I are commuting Hamiltonians for this action. The Hamiltonian vector fields are 
defined by 

5 = [grad H, 51 [ E . Q L "  

with grad H = - P ( , Q " ) ( k '  0 d ) ( H ) ,  H E  \)I and  P( ,Q")  is the projection upon R" 

We will more specifically consider the Hamiltonians { Q , , k } .  A subset from this (on 
a given .Q ") are orbit invariants, namely those with zero Hamiltonian vector field. 

Let &, : <SILk + , Q L k - '  be the projection determined by multiplication with A-', 
followed by a restriction to ,Q The coadjoint action of @ ( S ? )  on $9 lk- '  is identical 
with the coadjoint action on  the restriction of ,Q I h  to A ,SiLk-'. This forces us to 
consider the inverse limit space 

[3, 101. 

T 0 = l i m  ( , S I - " ,  T : - ~ ) .  
c 

We endow 2' with the coordinates T) = XF=O v - , A - ' .  Any term ,QL" is now obtained 
from 2' by truncation on the left into q_,A-', with q-, in n* (the nilpotent 
algebra constructed on the positive root spaces of sl( n ) ) .  

For the sake of simplicity of the discussion we will subsequently consider a ,SI'" 
for a given m. 

The set of orbit invariants on ,S+-" is spanned by I i = 2 , .  . . , n ;  k = m + 
1, . . . , i * m + l}. We will only consider the Hamiltonian vector fields with Hamiltonians 
Q, ,m- lr  i = 2 , .  . . , n and Q2,,,-?. 

The Hamiltonian vector field determined by Q2,"-' is given by 

< = [ + - , + A .  770,771 (D) 
where the symbol " denotes the restriction to b. 
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We choose the variable x along the integral curves of this vector field and select 
the Poisson submanifold $23 c ,Q I m  by the conditions 

where T~ is the base vector of the lowest negative root space and 

with ei the base vectors for the simple positive root spaces. 
The equation (D)  will be called the determining equation which will be solved 

formally (in A )  giving an  operator U :  ~ ( x ;  u l ,  . . . , u n - , )  + @,,, . ~ ( x ;  u1 , . . . , u n - , )  is 
the jet bundle of functions in C"(W, W " - I ) .  The operator U satisfies the equation 

D u = [ & , + A .  u0,a]  

where D is the total x derivative on the jet bundle. The operator U depends on 
constants, the orbit invariants by 

E m , k  are the orbit invariants [lo]. The existence of the solution U goes back upon a 
lemma by Wilson [lo, 121. 

The map into a given , S i L m  is obtained by simple restriction of U. This restriction 
is given by a set of PDE, the invariant equations, which restrict the jet bundle 
J ( x ;  u l ,  . . . , u ~ - ~ ) .  Invariance here means invariance with respect to the Hamiltonian 
vector fields which commute with the x flow [13]. 

The choice of the jet bundle, together with the map U, is such that the integral 
sections (jets of functions in C"(W,R"-')) are mapped by U into the integral curves 
of the vector field (D). We call such an operator U an  holonomic momentum operator. 
The commuting Hamiltonian vector fields, on ,Q lm, determine, by derivation of U, 

evolution equations on the jet bundle [lo, 111. 
For n = 2 we obtain the M K d v  equation from the quadratic Hamiltonian 
Let 

0 0  " 
U =  u _ , A - '  with 

1=O 

U is a function of x in C"(W, W), and hence the target variable of the jet bundle J ( x ;  U). 
Solving the determining equation (D) with the conditions 

--I 

f T r ( u . u ) =  1 E 2 , k A k  
k = - I  

with E 2 , - l  = 1, E * , - .  = 0 yields 
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Here U ,  means partial derivative with respect to x. The M K d v  is given by the Hamiltonian 
vector field 

D,a=[&.--7+Aa-,+h%", a ]  

giving 

U ,  = a (  U , , ,  - 6 u 2  . vX).  

From the commutativity of the flows one derives the principal Backlund equations (or  
zero curvature equations) 

D6-,-D,,_l&_l+[&-,,  & . - , ] = O  (BPI 

for each i and to= .x. 
The 15, can be expressed by means of the operator 

f ( 2 v  l 3  - D )  
= [ - t c2u  - D )  

0 

and potentials t,, such that 

&, = R(5, ) .  

The conjugated system is obtained from the transformation on the momentum operator 

one gets the Miura transformation [7]  
7 

X .  
u = u - - u  

The V, are also written as 

VI, = P ( l J  
with 

and  
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The potential -;U, for 'P2, determines the Kdv equation [9]: 
D,'P 1 - D'P2 + ['PI, "21 = 0 

or 
U , = ~ U y r r - ; u .  U,. 

The higher-order equations are then given by the higher Q 2 , m - k ,  k > 2.  
by the condition a-,lh = 0, 

h being the Cartan subalgebra. This condition becomes ( D  - 2 u ) t m  =0,  with tm the 
mth potential determining a-m. We remark that this PDE depends on the orbit invariants 

The restriction of a to a ,Sict-" defines a regular difference operator in the sense of 
van Moerbeke and Mumford [4]. Hence the solutions are rational functions on a 
complex torus, the Jacobian of the Riemann surface de t la -  z 9 Id1 = 0. This is an  
hyperelliptic curve. The solutions are the finite zone solutions [14, 151. 

The operator takes values in 2' and is restricted to ,SI 

E2.k ' 

We will follow the same scheme to derive the equations on A:" and Ai". 

2. The equations on AY) 

We define the principal system by the operator 

together with the conditions 
a : J ( x ;  U, u ) 4 &  

uo=[ :  0 0 0  ; +[; -U;" 1 %I. 
The determining equation is solved with the conditions: 

I X 

T r ( a .  a ) =  1 T r ( a *  U *  a )  = E 3 , - r h - f  
r = i  ,=I 

with 
E 2 , - I = E 3 , - 1 = E 2 , - 2 = 0  E3,-? = 3 E 3 . - 3  = 0. 

The commuting flows produce the Backlund equations 

where @ takes values in b. 

potentials (a, p )  and the operator R :  

D,&I - D4 + [ @] = 0 (B,) 

It follows from these equations that @ is necessarily determined by means of two 



3 84 P F Dhooghe 

On B l m  we consider the following Hamiltonian flows: 

Flow Hamiltonian Potentials 

with 
2 a1 = + ( U ,  - U - u u  - u 2 -  U,) 

p 1  = -Mal - f (  MU, - uzu - uu2 + U,,  + 2 U U , ) .  

The conjugated system is given by ucon,= c p '  U '  c p - '  with 

From 

one finds the Miura transformation 

F = U,, + ~ U U ,  + MU, - U'U - U U ~  G =  U ,  - U , +  U'+ U U +  U ? .  (9.2-1) 

The conjugated Backlund equations 

D,UI - DU+['Pl, U] = O  ( B c o n j )  

determine the U by means of the transformed potentials (&, E) and the operator P :  

with 

P l , = ( f ( D 2 - G ) ,  - D )  

PIZ=(-D,  1) 

O) 
P,, = ( f ( 2 D 3 - 2 G .  D + 3 F - 2 G X ) ,  - D 2 )  

P 2 ? = ( j ( - D 2 + G ) , O )  

P23 = (0 ,1)  

P31 = ( f (  2D4 - 2 G .  D2 + 3 F .  D - 4G,D + 3F,  - 2G,,) ,  -D3 + F )  

P3>= ( f ( D '  - G .  D+3F - G , ) ,  - D 2 +  G) 

P33 = ( f (  -D'+ G),  D ) .  
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The potentials (&, p) relate to the (a, p )  by 

The considered flows in this conjugated system are 
~~~ 

Potentials Transformed potentials Flow 

385 

(T) 

With 

\U*=(;) \U,=( - f G  ) 
-fF 

the Backlund equations are 

Equation (B-1) gives 

DF = $( D, G + D’G). 

The contact transformation J ( x ,  y ;  w )  + J ( x ;  F, G )  given by 

G = w, F = t (w ,  + w X x )  

(B-1-1) 

(B-1-2) 

solves (B-1-1). 
Equation (B-1) then reduces to the Boussinesq equation 

w,, = f(-w,,,, + 4wrwxr) (B-1-3) 

while (B-2) becomes 

w, = f (  w,,, - 2 w, . w, ). (B-1-4) 

This last equation is determined by (B-2) up to a constant (w, + C), which we have 
set equal to zero, fixing the initial condition of w,.  

Given the equations (B-1-3) and (B-1-4) one finds that equation (B-3) is identically 
satisfied. 

The Miura transformation now is 

w, = U,, + U,, + 2uu, - 2 v v ,  + uv, - vu, 
w, = U, - U, + u2+ u v +  v 2  

(2Jl57-2) 

and relates solutions of the (completely integrable) principal system to solutions of 
(B-1-3) and (B-1-4). 

Equation (B-1-4) is an evolution equation lying on the subspace of J ( x , y ;  w) 
determined by the Boussinesq equation (B-1-3), together with its prolongations. 
Because (B-1-4) is determined by the quadratic Hamiltonian Q 2 , m - 2 ,  it generalises the 
K d v  equation into two (spacelike) dimensions. 
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The term 9 ,  determines the operator 

-1 
D :l] 

- { ( w ,  + wxr)  - w ,  D 
D - q I =  

which is the linearisation of 

L = -f( W ,  + wXx) - w,D + D3.  

This operator gives the Lax formulation of the equations (B-1-3) and  (B-1-4). 

3. The equations on AY' 

The principal system is determined by 

(T: J ( x ;  U, U, w )  + 2:4,  

with the conditions 

0 0 0 0  
0 0 0 0  

1 0 0 0  

0 ]  & - 1 =  1. U 1  
0 - u + v  1 
0 0 - u + w  1 
0 0  0 - w  

The determining equation (D) is solved by means of 
X 

Tr([u]") = I F ~ , - ~ A - '  m = 2 , 3 , 4  

with E,,-z=O, m = 2 , 3 , 4 ;  E3, .3=E4 , -4=0 ,  E4, -3=4 .  

1=2 

The commuting flows give 

D,&-l - D+ + [e-, ,+I = 0 

where 4 takes values in b. From this we derive the operator form 

where R is a differential operator with values in b which is too long to write down 
here. The (an, p, ,  y , )  are the potentials. 

For a fixed m, the flows on $itt'" in which we are interested are: 

Flow Hamiltonian Potentials 

X Q2,,,-, (quadratic) ( O , O ,  1) 
Y Q,,m-l  [cubic) ( 0 ,  1, - U )  
Z Q4,m-I (quartic) (1, --U, Y 2 )  

1 Qz,m-2 I quadratic) ( a 3 , P 3 ,  Y 3 )  
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with 

y2= w 2 -  w u +  u 2 +  U,+ w , + 3 a ,  

a 3 = ~ ( - u 2 + U u - u ~ + U W - w ~ - w W , - c , - U , )  

p , - 1  - 8(  2 u 3  - 4u: + 4uu2 - 2 uuw + 2 u w 2  + 2 uw, + 5 uu, - 4uu, - 2 u2 w + 2uw2 + uw, 

- 2uu, + vu, + 2 ww, + wu, + w,, - U,, - 3u,,) 

+ l 0uu2w - l0uuw2 - lOuuw, + lOUUU, - l O U U U ,  + lOUU,,  -2OUU,, - 3 u 4  

y3 =&(sU4- 10u3u+ 15u2u2 - louZuw + i o u 2 w 2 +  iou2w,  - iou2u,  + i ou2u ,  - 1 0 ~ ~ ~  

+ 1 4 u 3 w -  1 7 ~ ~ ~ ~ -  ~ ~ u ~ w , + ~ u ~ v , +  1 0 u 2 U , + 6 ~ ~ 3 + 6 ~ ~ w , + 2 ~ ~ ~ ,  

- ~ O U W U ,  - ~ u w , ,  + 8 VU,, + ~ O U U , ,  - 3 w4 - 6 w 2  W, - ~ w ’ u ,  

+ ~ O W ~ U , + ~ ~ W W , , - ~ W U , , + ~ W , W , - ~ ~ W , U , + ~ ~ W , U , + U , U , + ~ ~ U , U ,  

- ~ S U , U , + ~ W , , , + ~ U , , , -  ~ O U , , , ) .  

The conjugated system is determined by cp (T - ‘p - l  with 
1 0 
U 1 

‘p=[  u 2 + u ,  U 

u3  + 3 uu, + U,, U2 - uu + u2 + U, + U, w 1 

This determines with 

LF, F2 F3 0 1  

the Miura transformation 

F,  = U ’ V W - U ’ W ~ - U ~ W , + U ~ U , - U U ~ W + U U W ~ + U U W , - ~ U U U , + ~ U U U ,  

- uv,, + 2uu,, - u2u ,  + vwu, - w2u,  - w,u, + U,,, - u,u, +2u,u, 

F2 = U’ U - UU’ - 2 UU, + ~ U U ,  + U’ w - UW’ - UW, + 2 V U ,  - uU, + U,, + 2U,, im- 1)  

F3 = U’- u u +  U’- uw + w 2 +  w,+ U,+ U,. 

The conjugated Backlund equations are 

Dr,-,Vl- DVl + [ * I  1 *,I = 0 

with to= x and again with 

where P is a differential operator with values in s 1 ( 4 ) ,  which we will not write down. 
The potentials (G,, P I ,  q,) are related to the ( a , ,  P I ,  y l )  by 

1 0 0  
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The considered flows are 

Flow Potentials Transformed potentials 

~ 

The Backlund equations are the following six equations: 
B, D,,", - D,i'€',+['4',,'P,]=0 

( €3 con, 1 
z,j= 1 , 2 , 3 , 4  ( i  # j )  t l  = x t 2  = Y t 3  = z t ,  = t. 

DF2= D2F3+fD,F3. (B12-1) 

Equation (Biz) gives 

This equation is solved by means of the contact transformation J ( x ,  y ;  FI, G )  + 

J ( x ;  F 1 ,  F,, F3)  given by 

On this jet bundle equation (B12)  becomes 
F3= DG F?= D'G+:D,G. (B12-2) 

DF, =a(  D,,G + 2D4G + D'D,G - 2DG - D'G) ( B  12-3 1 
D,F, =a(DD,,G+D3D,G+D,G. D'G) (h2-4)  

D,(D, ,G+D4G-2DG. D 2 G ) = D ( D , G .  D'G). (Bl2-5) 

which yields by integrability 

Equation (Bl3) gives the relation 

which we solve by means of the contact transformation J ( x ,  y ,  z; G )  + J ( x ,  y ;  F,  , G )  
with 

(B13-2) 

DF, =&(5D4G+ 3 D'D,G - 3 DG * D'G +4DD,G) (B13-1) 

F1= 7$[5 D3G + 3 DD,G - ;( DG)'+ 4D,G]. 
Equation (B13) reduces to 

D,,G=f(4DD2G - D4G+3DG* D'G) (B i3 -3 )  

D,D,G = -a(2D3 D,G - 3 DD,G DG - 3 D,G D'G) (B,,-4) 
D,,G = -&( -2D6G - 4D3 D,G -9DD,G * D, G -9D4G * DG 

+ 18D3G. D'G-9D2G(DG)') .  (B13-5) 
Equation (B13-3) is the usual K P  equation [ 14, 161. Then, given the former equations, 
(B13-4) reduces to 
D,G = -&(2D5G - 2D3 D,G + 20DG - DzG 

+ y D , G *  D,G-5D3G, DG-YD'G.  D'G). (B14-1) 
This last equation is (similar to the Y,3,  case) defined up  to a constant which we have 
set equal to zero. 

The remaining Backlund equations are identically satisfied by the set ( (  B,2-5), 
(B13-3), (BI3-4) ,  (B13-5), (BI4-1)) and their prolongations. The equations ((B12-5), 
( B I ~ - 3 1 ,  (B13-4), ( B 1 3 - 5 ) )  are submanifolds of J ( x ,  y ,  z ;  G ) ,  while (B14-l) is a symmetry 
equation. It is again natural to consider this equation as a generalisation of the Kdv 
equation into three spacelike dimensions. 
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Equation (B12-5) generalises the Boussinesq equation, while (B,?-3) is a new 
equation obtained from the commutation of the z flow with the two former flows (the 
x and y flows). This equation, which is the genuine Kadomtsev-Petviashvili equation, 
belongs to the larger set given by (B,?-4) and (BI3-5). 

The operator which now defines the Lax representation is 

L = -A[ 5G,,, + 3 G,, - ;( G,)2  + 4G3] - (G,, + {G, ) D  - G,D2 + D4. 

4. Conclusions and remarks 

( a )  For any 2, n ,  the conjugated Backlund equations are normally called K P  equations 
[5,6]. The main purpose of this paper is to show, for n = 3,4,  that these equations 
naturally fall into several classes. The equations are related to the commutation of 
Hamiltonian flows determined by Hamiltonians of a given order, using the Kostant- 
Adler-Symes theorem. The technique of enlarging the number of the space variables 
is used to reduce the number of independent functions involved. By doing so, and by 
following a given order of the flows (on a 51 l’”), one finds that the Boussinesq equation 
appears from a cubic Hamiltonian, while the genuine K P  equation appears from a 
quartic Hamiltonian. 

The first next quadratic Hamiltonian, after the x flow, determines for n = 2 the Kdv 

equation, while for n = 3 or 4 it determines an  evolution equation defined on a space 
of ( n  - 1) variables. 

( b )  The invariant submanifolds i PDE which restrict the holonomic momentum 
operator CT to a given ,S3 Lm)  are given by U-,(,,  = 0 where h is the (diagonal) Cartan 
subalgebra of sl(n).  The restricted U corresponds to a regular difference operator [4]. 
The algebraic curve is an  n-fold covering of the complex plane. 

Because the algebraic curve det/cT - z 0 id I = 0 is invariant under conjugation one 
may define this curve directly from cp * U .  c p - I .  

The operator CT determines a local diffeomorphism of the PDE and an orbit in ,it-’” 
fixed by the orbit invariants. The symplectic structure of the coadjoint structure pulls 
back upon the PDE (if  n = 3 the Boussinesq equation, if n = 4 the equations (B,2-5), 
( BI3-3)-(Bl3-5) restricted by the invariant PDE [ 101). 

Each of the equations has an  infinite set of conservation laws [ lo]  which we have 
not analysed. 

( c )  We have preferred to present the calculation rather than the theorems. One 
could, for all the steps we made, formulate appropriate theorems, which are easily 
generalised to sl(n) for any n. Because the calculations are long we are not able to 
give all the details, but the omitted steps should easily be reconstructed from the data 
we gave. The calculations were carried out on an IBM 4381 using REDUCE.  

We finally remark that the same calculations can be carried out for any real simple 
Lie algebra using the theorems of [3]. 
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